LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exact integration of the unsteady incompressible Navier-Stokes equations, gauge criteria, and applications

Photo from wikipedia

An exact first integral of the full, unsteady, incompressible Navier-Stokes equations is achieved in its most general form via the introduction of a tensor potential and parallels drawn with Maxwell’s… Click to show full abstract

An exact first integral of the full, unsteady, incompressible Navier-Stokes equations is achieved in its most general form via the introduction of a tensor potential and parallels drawn with Maxwell’s theory. Subsequent to this gauge freedoms are explored, showing that when used astutely they lead to a favourable reduction in the complexity of the associated equation set and number of unknowns, following which the inviscid limit case is discussed. Finally, it is shown how a change in gauge criteria enables a variational principle for steady viscous flow to be constructed having a self-adjoint form. Use of the new formulation is demonstrated, for different gauge variants of the first integral as the starting point, through the solution of a hierarchy of classical three-dimensional flow problems, two of which are tractable analytically, the third being solved numerically. In all cases the results obtained are found to be in excellent accord with corresponding solutions available in the open literature. Concurrently, the prescription of appropriate commonly occurring physical and necessary auxiliary boundary conditions, incorporating for completeness the derivation of a first integral of the dynamic boundary condition at a free surface, is established, together with how the general approach can be advantageously reformulated for application in solving unsteady flow problems with periodic boundaries.

Keywords: stokes equations; incompressible navier; unsteady incompressible; gauge criteria; navier stokes

Journal Title: Journal of Mathematical Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.