LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Very small tail state formation in Cu2ZnGeSe4

Photo by tinatelep from unsplash

We find that coevaporated Cu2ZnGeSe4 has an ideal bandgap for solar cells (1.39 ± 0.01 eV) and shows quite reduced tail state absorption with a very low Urbach energy of 28 meV, which is… Click to show full abstract

We find that coevaporated Cu2ZnGeSe4 has an ideal bandgap for solar cells (1.39 ± 0.01 eV) and shows quite reduced tail state absorption with a very low Urbach energy of 28 meV, which is far smaller than those of more studied Cu2ZnSnSe4 and Cu2ZnSnS4. The small tail states in Cu2ZnGeSe4 are found to originate from almost perfect cation ordering, while unusual tail state generation occurs in the Sn-based quaternary compounds by extensive cation substitution. Quite remarkably, the crystal total energy derived from first-principles calculations reveals a unified rule for the cation disordering, confirming that the lighter group-IV element (i.e., Ge) is essential for eliminating the tail state generation induced by cation mixing.We find that coevaporated Cu2ZnGeSe4 has an ideal bandgap for solar cells (1.39 ± 0.01 eV) and shows quite reduced tail state absorption with a very low Urbach energy of 28 meV, which is far smaller than those of more studied Cu2ZnSnSe4 and Cu2ZnSnS4. The small tail states in Cu2ZnGeSe4 are found to originate from almost perfect cation ordering, while unusual tail state generation occurs in the Sn-based quaternary compounds by extensive cation substitution. Quite remarkably, the crystal total energy derived from first-principles calculations reveals a unified rule for the cation disordering, confirming that the lighter group-IV element (i.e., Ge) is essential for eliminating the tail state generation induced by cation mixing.

Keywords: cation; tail; small tail; tail state; cu2zngese4

Journal Title: Applied Physics Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.