Highly crystalline and smooth 1% Ho3+ doped ZnO microspheres with diameters ranging from 0.5 to 15 μm were synthesized using laser ablation technique. Near band edge whispering gallery mode (WGM) resonances… Click to show full abstract
Highly crystalline and smooth 1% Ho3+ doped ZnO microspheres with diameters ranging from 0.5 to 15 μm were synthesized using laser ablation technique. Near band edge whispering gallery mode (WGM) resonances from Ho:ZnO microspheres with a single oscillation route in the UV range are observed with 355 nm excitation. Apart from the significantly enhanced visible WGM resonances associated with intrinsic oxygen vacancy defects by Ho3+ doping, the visible range WGM resonances associated with the Ho3+ 5F5 → 5I8 emission at 629–690 nm are also observed with a 488 nm excitation. The WGMs of Ho3+ f-f emission possess lower threshold and high Q-factor values.Highly crystalline and smooth 1% Ho3+ doped ZnO microspheres with diameters ranging from 0.5 to 15 μm were synthesized using laser ablation technique. Near band edge whispering gallery mode (WGM) resonances from Ho:ZnO microspheres with a single oscillation route in the UV range are observed with 355 nm excitation. Apart from the significantly enhanced visible WGM resonances associated with intrinsic oxygen vacancy defects by Ho3+ doping, the visible range WGM resonances associated with the Ho3+ 5F5 → 5I8 emission at 629–690 nm are also observed with a 488 nm excitation. The WGMs of Ho3+ f-f emission possess lower threshold and high Q-factor values.
               
Click one of the above tabs to view related content.