LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NiMoO4 nanorods supported on nickel foam for high-performance supercapacitor electrode materials

Photo by eiskonen from unsplash

Well-aligned hierarchical NiMoO4 nanorods are successfully grown on nickel foam by a facile hydrothermal method, which can be directly used as integrated electrodes for supercapacitors without the addition of other… Click to show full abstract

Well-aligned hierarchical NiMoO4 nanorods are successfully grown on nickel foam by a facile hydrothermal method, which can be directly used as integrated electrodes for supercapacitors without the addition of other ancillary materials such as binders or additives to enhance electrode cycling stability or conductivity. The samples are characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared, galvanostatic charge-discharge, and electrochemical impedance spectroscopy measurements. The achieved NiMoO4 nanorods are uniformly grown on nickel foam with the average diameter of 100 nm and length of 3 μm. The results indicate that the NiMoO4 nanorod samples deliver high specific capacitances of 3412, 2490, 1740, and 1496 F/g at 1, 4, 7, and 10 A/g, respectively. Furthermore, the excellent rate capability of the NiMoO4 nanorod based supercapacitors has been obtained in the KOH electrolyte, demonstrating that the as-prepared products can be promising electrode materials for supercapacitors.

Keywords: electrode materials; nimoo4 nanorods; nickel foam; spectroscopy; nanorods supported

Journal Title: Journal of Renewable and Sustainable Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.