LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges

Photo by makcedward from unsplash

A cantilever-based microring laser structure was proposed for easily integrating III-V active layer into mechanically stretchable substrates. Local strain gauges were demonstrated by embedding cantilever-based microring lasers in a deformable… Click to show full abstract

A cantilever-based microring laser structure was proposed for easily integrating III-V active layer into mechanically stretchable substrates. Local strain gauges were demonstrated by embedding cantilever-based microring lasers in a deformable polymer substrate. The characterizations of microscale local strain gauges had been studied from both simulated and experimental results. The lasing wavelength of strain gauges was blue-shift and linear tuned by stretching the flexible substrate. Gauge factor being ∼11.5 nm per stretching unit was obtained for a cantilever-based microring laser with structural parameters R=1.25 μm, W1=450 nm and W2=240 nm. Such microring lasers embedded in a flexible substrate are supposed to function not only as strain gauges for monitoring the micro- or nano-structured deformation, but also tunable light sources for photonic integrated circuits.A cantilever-based microring laser structure was proposed for easily integrating III-V active layer into mechanically stretchable substrates. Local strain gauges were demonstrated by embedding cantilever-based microring lasers in a deformable polymer substrate. The characterizations of microscale local strain gauges had been studied from both simulated and experimental results. The lasing wavelength of strain gauges was blue-shift and linear tuned by stretching the flexible substrate. Gauge factor being ∼11.5 nm per stretching unit was obtained for a cantilever-based microring laser with structural parameters R=1.25 μm, W1=450 nm and W2=240 nm. Such microring lasers embedded in a flexible substrate are supposed to function not only as strain gauges for monitoring the micro- or nano-structured deformation, but also tunable light sources for photonic integrated circuits.

Keywords: microring lasers; cantilever based; local strain; based microring; strain; strain gauges

Journal Title: AIP Advances
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.