LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of Ge vacancies as electronic defects in methyl- and hydrogen-terminated germanane

Photo from wikipedia

We use a combination of optical and electrostatic surface science techniques to measure electronically active native defects in multilayer GeCH3 and GeH, two-dimensional (2D) functionalized materials. Chemical processing techniques coupled… Click to show full abstract

We use a combination of optical and electrostatic surface science techniques to measure electronically active native defects in multilayer GeCH3 and GeH, two-dimensional (2D) functionalized materials. Chemical processing techniques coupled with density functional theory enable us to identify the specific physical nature of both native point defects and synthesis-related impurities which can limit the optical and charge transport properties of these materials. Direct comparison of optical measurements with calculated electronic levels provides identification of these localized, deep level gap states and confirms partial H-passivation of dangling bonds, revealing synthesis and processing methods needed to control specific defects and optimize these 2D materials for emergent solid state-electronics.We use a combination of optical and electrostatic surface science techniques to measure electronically active native defects in multilayer GeCH3 and GeH, two-dimensional (2D) functionalized materials. Chemical processing techniques coupled with density functional theory enable us to identify the specific physical nature of both native point defects and synthesis-related impurities which can limit the optical and charge transport properties of these materials. Direct comparison of optical measurements with calculated electronic levels provides identification of these localized, deep level gap states and confirms partial H-passivation of dangling bonds, revealing synthesis and processing methods needed to control specific defects and optimize these 2D materials for emergent solid state-electronics.

Keywords: identification vacancies; processing; electronic defects; synthesis; vacancies electronic

Journal Title: Applied Physics Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.