LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum key distribution using in-line highly birefringent interferometers

Photo by hudsoncrafted from unsplash

Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems.… Click to show full abstract

Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems. Here, we propose a compact and cost-effective alternative to the asymmetric Mach-Zehnder interferometer commonly used to implement phase encoding in the Bennett-Brassard 1984 (BB84) QKD protocol. Our solution consists of an all-fiber, in-line, highly birefringent interferometer (HBI). The HBI shows improved tolerance to length mismatches and a simpler assembly, making it particularly desirable for the fabrication of multi-user systems where several interferometers must have matched delays and where cost and space considerations can be most critical, such as quantum access networks. As a proof-of-principle, we demonstrate point-to-point QKD operation with HBIs over 15.5 km drop fiber and an 8-port passive optical network splitter. We achieve a secure key generation rate of 299.4 ± 16.4 kbit/s with a quantum bit error rate of 2.89 ± 0.31% for a continuous 25 h operation period.Secure communication networks enabled by commercial quantum key distribution (QKD) are already available. However, their widespread deployment will require great efforts towards reducing the currently prohibitive cost of QKD systems. Here, we propose a compact and cost-effective alternative to the asymmetric Mach-Zehnder interferometer commonly used to implement phase encoding in the Bennett-Brassard 1984 (BB84) QKD protocol. Our solution consists of an all-fiber, in-line, highly birefringent interferometer (HBI). The HBI shows improved tolerance to length mismatches and a simpler assembly, making it particularly desirable for the fabrication of multi-user systems where several interferometers must have matched delays and where cost and space considerations can be most critical, such as quantum access networks. As a proof-of-principle, we demonstrate point-to-point QKD operation with HBIs over 15.5 km drop fiber and an 8-port passive optical network splitter. We achieve a secure key generation rate of 299...

Keywords: qkd; key distribution; highly birefringent; line highly; quantum key

Journal Title: Applied Physics Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.