LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reservoir computing with a single delay-coupled non-linear mechanical oscillator

Reservoir computing was achieved by constructing a network of virtual nodes multiplexed in time and sharing a single silicon beam exhibiting a classical Duffing non-linearity as the source of nonlinearity.… Click to show full abstract

Reservoir computing was achieved by constructing a network of virtual nodes multiplexed in time and sharing a single silicon beam exhibiting a classical Duffing non-linearity as the source of nonlinearity. The delay-coupled electromechanical system performed well on time series classification tasks, with error rates below 0.1% for the 1st, 2nd, and 3rd order parity benchmarks and an accuracy of ( 78 ± 2 ) % for the TI-46 spoken word recognition benchmark. As a first demonstration of reservoir computing using a non-linear mass-spring system in MEMS, this result paves the way to the creation of a new class of compact devices combining the functions of sensing and computing.Reservoir computing was achieved by constructing a network of virtual nodes multiplexed in time and sharing a single silicon beam exhibiting a classical Duffing non-linearity as the source of nonlinearity. The delay-coupled electromechanical system performed well on time series classification tasks, with error rates below 0.1% for the 1st, 2nd, and 3rd order parity benchmarks and an accuracy of ( 78 ± 2 ) % for the TI-46 spoken word recognition benchmark. As a first demonstration of reservoir computing using a non-linear mass-spring system in MEMS, this result paves the way to the creation of a new class of compact devices combining the functions of sensing and computing.

Keywords: delay coupled; reservoir; time; non linear; reservoir computing

Journal Title: Journal of Applied Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.