This paper presents a comprehensive investigation of the free vibrations of stepped straight and curved beams with different shapes and different materials. The beams are assumed to be Euler-Bernoulli type,… Click to show full abstract
This paper presents a comprehensive investigation of the free vibrations of stepped straight and curved beams with different shapes and different materials. The beams are assumed to be Euler-Bernoulli type, and Finite Element Displacement Method (FEDM) is used as a computational approach. In-plane and out-of-plane vibration analyses are handled with stepped straight and curved beams at different end conditions. Material pairs of the stepped curved beam are considered as (i) steel-steel, (ii) steel-aluminum, (iii) steel-brass and (iv) steel-araldite. Results are given in tabular form and compared with those in literature and computations obtained by Ansys. The effects of beam shape and different material type on the vibration characteristics are also investigated.This paper presents a comprehensive investigation of the free vibrations of stepped straight and curved beams with different shapes and different materials. The beams are assumed to be Euler-Bernoulli type, and Finite Element Displacement Method (FEDM) is used as a computational approach. In-plane and out-of-plane vibration analyses are handled with stepped straight and curved beams at different end conditions. Material pairs of the stepped curved beam are considered as (i) steel-steel, (ii) steel-aluminum, (iii) steel-brass and (iv) steel-araldite. Results are given in tabular form and compared with those in literature and computations obtained by Ansys. The effects of beam shape and different material type on the vibration characteristics are also investigated.
               
Click one of the above tabs to view related content.