LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental and numerical investigation of a flow induced by a pulsed plasma column

Photo by mbrunacr from unsplash

The paper studies, both experimentally and numerically, a high-speed transient flow induced by a pulsed volume discharge in still air at low pressure. It is shown that, in the constricted… Click to show full abstract

The paper studies, both experimentally and numerically, a high-speed transient flow induced by a pulsed volume discharge in still air at low pressure. It is shown that, in the constricted mode, the discharge is capable of producing uniform deposition of the electrical energy into a long (24 mm in length), thin (less than 2 mm in radius) plasma column. Flow visualization experiments using particle image velocimetry (PIV) and high-speed shadow imaging indicate that this pulsed localized energy deposition generates a highly symmetrical cylindrical shock wave expanding at an average speed of 550 m/s within the first 40 μs after the discharge. Three-dimensional computational fluid dynamics (CFD) simulations successfully reproduce the experimentally observed flow structures and provide better insight into the complex discharge-induced flow. Modeling the trajectories of “virtual” particles within the CFD-predicted flow yields excellent agreement between numerical and PIV flow velocity profiles, and this comparison is used to quantify the rates of “rapid” energy thermalization in the pulsed discharge.The paper studies, both experimentally and numerically, a high-speed transient flow induced by a pulsed volume discharge in still air at low pressure. It is shown that, in the constricted mode, the discharge is capable of producing uniform deposition of the electrical energy into a long (24 mm in length), thin (less than 2 mm in radius) plasma column. Flow visualization experiments using particle image velocimetry (PIV) and high-speed shadow imaging indicate that this pulsed localized energy deposition generates a highly symmetrical cylindrical shock wave expanding at an average speed of 550 m/s within the first 40 μs after the discharge. Three-dimensional computational fluid dynamics (CFD) simulations successfully reproduce the experimentally observed flow structures and provide better insight into the complex discharge-induced flow. Modeling the trajectories of “virtual” particles within the CFD-predicted flow yields excellent agreement between numerical and PIV flow velocity profiles, and this comparis...

Keywords: energy; discharge; induced pulsed; plasma column; flow induced; flow

Journal Title: Physics of Fluids
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.