An InAs/GaSb tunnel diode structure was heterogeneously integrated on silicon by solid source molecular beam epitaxy using a 200 nm strained GaAs1-ySby dislocation filtering buffer. X-ray analysis demonstrated near complete… Click to show full abstract
An InAs/GaSb tunnel diode structure was heterogeneously integrated on silicon by solid source molecular beam epitaxy using a 200 nm strained GaAs1-ySby dislocation filtering buffer. X-ray analysis demonstrated near complete strain relaxation of the metamorphic buffer and a quasi-lattice-matched InAs/GaSb heterostructure, while high-resolution transmission electron microscopy revealed sharp, atomically abrupt heterointerfaces between the GaSb and InAs epilayers. In-plane magnetotransport analysis revealed Shubnikov-de Haas oscillations, indicating the presence of a dominant high mobility carrier, thereby testifying to the quality of the heterostructure and interfaces. Temperature-dependent current-voltage characteristics of fabricated InAs/GaSb tunnel diodes demonstrated Shockley-Read-Hall generation-recombination at low bias and band-to-band tunneling transport at high bias. The extracted conductance slope from the fabricated tunnel diodes increased with increasing temperature due to thermal emission (Ea ∼ 0.48 eV) and trap-assisted tunneling. Thus, this work illustrates the significance of defect control in the heterointegration of metamorphic InAs/GaSb tunnel diode heterostructures on silicon when using GaAs1-ySby dislocation filtering buffers.An InAs/GaSb tunnel diode structure was heterogeneously integrated on silicon by solid source molecular beam epitaxy using a 200 nm strained GaAs1-ySby dislocation filtering buffer. X-ray analysis demonstrated near complete strain relaxation of the metamorphic buffer and a quasi-lattice-matched InAs/GaSb heterostructure, while high-resolution transmission electron microscopy revealed sharp, atomically abrupt heterointerfaces between the GaSb and InAs epilayers. In-plane magnetotransport analysis revealed Shubnikov-de Haas oscillations, indicating the presence of a dominant high mobility carrier, thereby testifying to the quality of the heterostructure and interfaces. Temperature-dependent current-voltage characteristics of fabricated InAs/GaSb tunnel diodes demonstrated Shockley-Read-Hall generation-recombination at low bias and band-to-band tunneling transport at high bias. The extracted conductance slope from the fabricated tunnel diodes increased with increasing temperature due to thermal emission (Ea ...
               
Click one of the above tabs to view related content.