LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ferroelectric switching dynamics in 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 thin films

Photo by nci from unsplash

In this work, the ferroelectric characteristics of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BCZT) thin films grown on 0.7 wt. % Nb-doped (001)-SrTiO3 (Nb:STO) single-crystal have been investigated. High-resolution transmission electron microscopy and electron energy loss… Click to show full abstract

In this work, the ferroelectric characteristics of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BCZT) thin films grown on 0.7 wt. % Nb-doped (001)-SrTiO3 (Nb:STO) single-crystal have been investigated. High-resolution transmission electron microscopy and electron energy loss spectroscopy revealed a very sharp Nb:STO/BCZT interface, while selected area electron diffraction revealed the epitaxial growth of the BCZT layer on the Nb:STO substrate. The ferroelectric nature of the BCZT films have been investigated by piezoresponse force microscopy and hysteresis loops. The effect of electric field on polarization switching kinetics has been investigated and has been analyzed by the nucleation limited switching model with a Lorentzian distribution function. The local field variation was found to decrease with the increase in the electric field, and thus, the switching process becomes faster. The peak value of the polarization current and the logarithmic characteristic switching time exhibited an exponential dependence on the inverse of electric field. This model gave an excellent agreement with the experimental polarization reversal transients throughout the whole time range.In this work, the ferroelectric characteristics of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BCZT) thin films grown on 0.7 wt. % Nb-doped (001)-SrTiO3 (Nb:STO) single-crystal have been investigated. High-resolution transmission electron microscopy and electron energy loss spectroscopy revealed a very sharp Nb:STO/BCZT interface, while selected area electron diffraction revealed the epitaxial growth of the BCZT layer on the Nb:STO substrate. The ferroelectric nature of the BCZT films have been investigated by piezoresponse force microscopy and hysteresis loops. The effect of electric field on polarization switching kinetics has been investigated and has been analyzed by the nucleation limited switching model with a Lorentzian distribution function. The local field variation was found to decrease with the increase in the electric field, and thus, the switching process becomes faster. The peak value of the polarization current and the logarithmic characteristic switching time exhibited an exponential dependen...

Keywords: 5ba zr0; bczt; microscopy; field; spectroscopy; electron

Journal Title: Applied Physics Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.