LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy of dendritic avalanches in thin-film superconductors

Photo from wikipedia

A method for calculating stored magnetic energy in a thin superconducting film based on quantitative magneto-optical imaging is developed. Energy and magnetic moment are determined with these calculations for full… Click to show full abstract

A method for calculating stored magnetic energy in a thin superconducting film based on quantitative magneto-optical imaging is developed. Energy and magnetic moment are determined with these calculations for full hysteresis loops in a thin film of the superconductor NbN. Huge losses in energy are observed when dendritic avalanches occur. Magnetic energy, magnetic moment, sheet current and magnetic flux distributions, all extracted from the same calibrated magneto-optical images, are analyzed and discussed. Dissipated energy and the loss in moment when dendritic avalanches occur are related to each other. Calculating these losses for specific spatially-resolved flux avalanches is a great advantage, because of their unpredictable and non-reproducible nature. The relative losses in energy are much higher than the relative losses in moment.A method for calculating stored magnetic energy in a thin superconducting film based on quantitative magneto-optical imaging is developed. Energy and magnetic moment are determined with these calculations for full hysteresis loops in a thin film of the superconductor NbN. Huge losses in energy are observed when dendritic avalanches occur. Magnetic energy, magnetic moment, sheet current and magnetic flux distributions, all extracted from the same calibrated magneto-optical images, are analyzed and discussed. Dissipated energy and the loss in moment when dendritic avalanches occur are related to each other. Calculating these losses for specific spatially-resolved flux avalanches is a great advantage, because of their unpredictable and non-reproducible nature. The relative losses in energy are much higher than the relative losses in moment.

Keywords: moment; energy; thin film; dendritic avalanches; magnetic energy

Journal Title: AIP Advances
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.