LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic domain formation in ultrathin complex oxide ferromagnetic/antiferromagnetic bilayers

Photo from wikipedia

In this study, we report on the magnetic domain formation in ultrathin blanket films and patterned micro- and nanostructures of ferromagnetic (FM) La0.7Sr0.3MnO3 single-layers and antiferromagnetic (AF)/ferromagnetic LaFeO3/La0.7Sr0.3MnO3 bilayers, as… Click to show full abstract

In this study, we report on the magnetic domain formation in ultrathin blanket films and patterned micro- and nanostructures of ferromagnetic (FM) La0.7Sr0.3MnO3 single-layers and antiferromagnetic (AF)/ferromagnetic LaFeO3/La0.7Sr0.3MnO3 bilayers, as investigated by soft x-ray photoemission electron microscopy. In single-layer La0.7Sr0.3MnO3, the domain size is significantly reduced compared to that found in thicker layers, and rectangular micromagnets display metastable multidomain states distinctly different from the flux-closure ground states commonly found in thicker elements. In the LaFeO3/La0.7Sr0.3MnO3 bilayers, complex multidomain patterns are observed for blanket films and patterned magnets with robust perpendicular (spin-flop) coupling between spins in the AF and FM layers. By thermal cycling of the sample through the La0.7Sr0.3MnO3 Curie temperature, we find that the native antiferromagnetic domain pattern of LaFeO3 pins the location of domain boundaries in the adjacent La0.7Sr0.3MnO3 layer.In this study, we report on the magnetic domain formation in ultrathin blanket films and patterned micro- and nanostructures of ferromagnetic (FM) La0.7Sr0.3MnO3 single-layers and antiferromagnetic (AF)/ferromagnetic LaFeO3/La0.7Sr0.3MnO3 bilayers, as investigated by soft x-ray photoemission electron microscopy. In single-layer La0.7Sr0.3MnO3, the domain size is significantly reduced compared to that found in thicker layers, and rectangular micromagnets display metastable multidomain states distinctly different from the flux-closure ground states commonly found in thicker elements. In the LaFeO3/La0.7Sr0.3MnO3 bilayers, complex multidomain patterns are observed for blanket films and patterned magnets with robust perpendicular (spin-flop) coupling between spins in the AF and FM layers. By thermal cycling of the sample through the La0.7Sr0.3MnO3 Curie temperature, we find that the native antiferromagnetic domain pattern of LaFeO3 pins the location of domain boundaries in the adjacent La0.7Sr0.3MnO3 layer.

Keywords: domain formation; magnetic domain; microscopy; 7sr0 3mno3; la0 7sr0

Journal Title: Applied Physics Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.