LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Linear wave propagation for resistive relativistic magnetohydrodynamics

Photo from wikipedia

We present a linear mode analysis of the relativistic MHD equations in the presence of finite electrical conductivity. Starting from the fully relativistic covariant formulation, we derive the dispersion relation… Click to show full abstract

We present a linear mode analysis of the relativistic MHD equations in the presence of finite electrical conductivity. Starting from the fully relativistic covariant formulation, we derive the dispersion relation in the limit of small linear perturbations. It is found that the system supports ten wave modes which can be easily identified in the limits of small or large conductivities. In the resistive limit, matter and electromagnetic fields decouple and solution modes approach pairs of light and acoustic waves as well as a number of purely damped (non-propagating) modes. In the opposite (ideal) limit, the frozen-in condition applies and the modes of propagation coincide with a pair of fast magnetosonic, a pair of slow and Alfv\'en modes, as expected. In addition, the contact mode is always present and it is unaffected by the conductivity. For finite values of the conductivity, the dispersion relation gives rise to either pairs of opposite complex conjugate roots or purely imaginary (damped) modes. In all cases, the system is dissipative and also dispersive as the phase velocity depends nonlineary on the wavenumber. Occasionally, the group velocity may exceed the speed of light although this does not lead to superluminal signal propagation.

Keywords: propagation; propagation resistive; wave propagation; linear wave; magnetohydrodynamics; resistive relativistic

Journal Title: Physics of Plasmas
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.