LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Weak magnetic interaction, large magnetocaloric effect, and underlying spin model in triangular lattice GdFeTeO6

Photo from wikipedia

The nature of 4f-3d magnetic interaction in oxides as well as its influence on the magnetocaloric effect (MCE) is an interesting topic. Here, we report the weak magnetic interaction and… Click to show full abstract

The nature of 4f-3d magnetic interaction in oxides as well as its influence on the magnetocaloric effect (MCE) is an interesting topic. Here, we report the weak magnetic interaction and large MCE in a new triangular lattice GdFeTeO6 synthesized by the solid state reaction method. The weak exchange, which was seldom observed in 4f-3d oxides, is supported by the low ordering temperature (TC ≤ 3 K) and a positive but small Curie-Weiss temperature (θp = 3 K). Under an external magnetic field, the magnetization process yields a large magnetic entropy change of 38.5 J kg−1 K−1 at 5 K for 0-7 T and 23.6 J kg−1 K−1 at 3 K for 0-3 T. Finally, our first-principles calculations demonstrate a ferrimagnetic spin model with the Gd(↑)-Gd(↑)-Fe(↓)-Fe(↓) configuration. The weak magnetic interaction is an average effect of ferromagnetic (4f-4f and 3d-3d) and antiferromagnetic (4f-3d) interactions. The antiferromagnetic 4f-3d interaction is a reason for the reduction of MCE.The nature of 4f-3d magnetic interaction in oxides as well as its influence on the magnetocaloric effect (MCE) is an interesting topic. Here, we report the weak magnetic interaction and large MCE in a new triangular lattice GdFeTeO6 synthesized by the solid state reaction method. The weak exchange, which was seldom observed in 4f-3d oxides, is supported by the low ordering temperature (TC ≤ 3 K) and a positive but small Curie-Weiss temperature (θp = 3 K). Under an external magnetic field, the magnetization process yields a large magnetic entropy change of 38.5 J kg−1 K−1 at 5 K for 0-7 T and 23.6 J kg−1 K−1 at 3 K for 0-3 T. Finally, our first-principles calculations demonstrate a ferrimagnetic spin model with the Gd(↑)-Gd(↑)-Fe(↓)-Fe(↓) configuration. The weak magnetic interaction is an average effect of ferromagnetic (4f-4f and 3d-3d) and antiferromagnetic (4f-3d) interactions. The antiferromagnetic 4f-3d interaction is a reason for the reduction of MCE.

Keywords: magnetic interaction; magnetocaloric effect; weak magnetic; interaction; interaction large

Journal Title: Journal of Applied Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.