LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonvolatile voltage controlled molecular spin state switching

Photo by tabithaturnervisuals from unsplash

Voltage-controlled room temperature isothermal reversible spin crossover switching of [Fe{H2B(pz)2}2(bipy)] thin films is demonstrated. This isothermal switching is evident in thin film bilayer structures where the molecular spin crossover film… Click to show full abstract

Voltage-controlled room temperature isothermal reversible spin crossover switching of [Fe{H2B(pz)2}2(bipy)] thin films is demonstrated. This isothermal switching is evident in thin film bilayer structures where the molecular spin crossover film is adjacent to a molecular ferroelectric. The adjacent molecular ferroelectric, either polyvinylidene fluoride hexafluoropropylene or croconic acid (C5H2O5), appears to lock the spin crossover [Fe{H2B(pz)2}2(bipy)] molecular complex largely in the low or high spin state depending on the direction of ferroelectric polarization. In both a planar two terminal diode structure and a transistor structure, the voltage controlled isothermal reversible spin crossover switching of [Fe{H2B(pz)2}2(bipy)] is accompanied by a resistance change and is seen to be nonvolatile, i.e., retained in the absence of an applied electric field. The result appears general, as the voltage controlled nonvolatile switching can be made to work with two different molecular ferroelectrics: croconic acid and polyvinylidene fluoride hexafluoropropylene.Voltage-controlled room temperature isothermal reversible spin crossover switching of [Fe{H2B(pz)2}2(bipy)] thin films is demonstrated. This isothermal switching is evident in thin film bilayer structures where the molecular spin crossover film is adjacent to a molecular ferroelectric. The adjacent molecular ferroelectric, either polyvinylidene fluoride hexafluoropropylene or croconic acid (C5H2O5), appears to lock the spin crossover [Fe{H2B(pz)2}2(bipy)] molecular complex largely in the low or high spin state depending on the direction of ferroelectric polarization. In both a planar two terminal diode structure and a transistor structure, the voltage controlled isothermal reversible spin crossover switching of [Fe{H2B(pz)2}2(bipy)] is accompanied by a resistance change and is seen to be nonvolatile, i.e., retained in the absence of an applied electric field. The result appears general, as the voltage controlled nonvolatile switching can be made to work with two different molecular ferroelectrics: croconi...

Keywords: h2b bipy; spin crossover; spin; voltage controlled

Journal Title: Applied Physics Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.