LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hard x-ray bursts observed in association with Rayleigh-Taylor instigated current disruption in a solar-relevant lab experiment

Photo from wikipedia

Measurements by multiple X-ray detectors show transient emission of a 1 μs pulse of non-mono-energetic ∼6 keV X-rays by a cold, dense MHD-driven plasma jet. Because the collision mean free path… Click to show full abstract

Measurements by multiple X-ray detectors show transient emission of a 1 μs pulse of non-mono-energetic ∼6 keV X-rays by a cold, dense MHD-driven plasma jet. Because the collision mean free path is much smaller than the jet dimensions, the acceleration of particles to high energy was not expected. The X-ray pulse occurs when the jet undergoes a kink instability which accelerates the jet laterally so that a fast-growing secondary Rayleigh-Taylor instability is triggered which then breaks the jet. The jet breaking is correlated in time with several other fast changing phenomena. It is proposed that despite the short collision mean free path, an inductive electric field associated with this breaking accelerates a certain subgroup of electrons to keV energies without any of these electrons undergoing collisions. It is further proposed that after being accelerated to high energy, these fast electrons are suddenly decelerated via collisions and radiate X-rays.Measurements by multiple X-ray detectors show transient emission of a 1 μs pulse of non-mono-energetic ∼6 keV X-rays by a cold, dense MHD-driven plasma jet. Because the collision mean free path is much smaller than the jet dimensions, the acceleration of particles to high energy was not expected. The X-ray pulse occurs when the jet undergoes a kink instability which accelerates the jet laterally so that a fast-growing secondary Rayleigh-Taylor instability is triggered which then breaks the jet. The jet breaking is correlated in time with several other fast changing phenomena. It is proposed that despite the short collision mean free path, an inductive electric field associated with this breaking accelerates a certain subgroup of electrons to keV energies without any of these electrons undergoing collisions. It is further proposed that after being accelerated to high energy, these fast electrons are suddenly ...

Keywords: mean free; jet; collision mean; ray; rayleigh taylor

Journal Title: Physics of Plasmas
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.