LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstencil-based spatial immobilization of individual cells for single cell analysis.

Photo by thisisengineering from unsplash

Cells exhibit biologically heterogeneous phenotypes, particularly in pathogenic states. To study cell behavior at the single cell level, a variety of micropatterning techniques have been proposed that allow the spatial… Click to show full abstract

Cells exhibit biologically heterogeneous phenotypes, particularly in pathogenic states. To study cell behavior at the single cell level, a variety of micropatterning techniques have been proposed that allow the spatial organization of cells with great control over cell volume, morphology, and intercellular interactions. Among these strategies, microstencil patterning has traditionally been eschewed due to fragility of membranes and lack of control over cell configurations within patterns. Here, we present a simple and reproducible strategy to create robust microstencils and achieve consistent and efficient cell patterns requiring less than 4 μl of cell solution. Polydimethylsiloxane microstencils fabricated with this technique can be used dozens of times over the course of several months with minimal wear or degradation. Characterization of pattern size, cell suspension density, and droplet volume allows on-demand configurations of singlets, doublets, triplets, or multiple cells per individual space. In addition, a novel technique to suppress evaporative convection provides precise and repeatable results, with a twofold increase in patterning efficacy. Selective dual surface modification to create hydrophilic islands on a hydrophobic substrate facilitates a significantly longer and healthier lifespan of cells without crossover of pattern boundaries. The ability to pattern individual cells with or without an extracellular matrix substrate and to control the magnitude of cell-cell contact as well as spread area provides a powerful approach to monitoring cell functions such as proliferation and intercellular signaling.

Keywords: single cell; microstencil based; individual cells; based spatial; spatial immobilization; cell

Journal Title: Biomicrofluidics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.