LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Resonance absorption of a broadband laser pulse

Photo by nci from unsplash

Broad bandwidth, infrared light sources have the potential to revolutionize inertial confinement fusion (ICF) by suppressing laser-plasma instabilities. There is, however, a tradeoff: The broad bandwidth precludes high efficiency conversion… Click to show full abstract

Broad bandwidth, infrared light sources have the potential to revolutionize inertial confinement fusion (ICF) by suppressing laser-plasma instabilities. There is, however, a tradeoff: The broad bandwidth precludes high efficiency conversion to the ultraviolet, where laser-plasma interactions are weaker. Operation in the infrared could intensify the role of resonance absorption, an effect long suspected to be the shortcoming of early ICF experiments. Here we present simulations exploring the effect of bandwidth on resonance absorption. In the linear regime, bandwidth has little effect on resonance absorption; in the nonlinear regime, bandwidth suppresses enhanced absorption resulting from the electromagnetic decay instability. These findings evince that regardless of bandwidth, an ICF implosion will confront at least linear levels of resonance absorption.

Keywords: absorption; absorption broadband; laser; resonance absorption; bandwidth

Journal Title: Physics of Plasmas
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.