LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancement of resistive switching performance by introducing a thin non-stoichiometric CeO2-x switching layer in TiO2-based resistive random access memory

Photo by marius from unsplash

By introducing a thin non-stoichiometric CeO2-x switching layer between the high oxygen affinity metal TaN top electrode and the TiO2 layer in a TaN/CeO2-x/TiO2/Pt bilayer (BL) device, it is possible… Click to show full abstract

By introducing a thin non-stoichiometric CeO2-x switching layer between the high oxygen affinity metal TaN top electrode and the TiO2 layer in a TaN/CeO2-x/TiO2/Pt bilayer (BL) device, it is possible to enhance the endurance characteristics and overcome the reliability issue. Compared with a single layer device, a BL device significantly enhances the number of direct current overswitching cycles to >1.2 × 104, non-destructive retention (>104 s), and switching uniformity. A TaON interface layer is formed which served as a reservoir of oxygen ions (O2−) in the SET-process and acts as an O2− supplier to refill the oxygen vacancies in the RESET-process and so plays a key role in the formation and rupture of conductive filaments. This study demonstrates that simply introducing a thin non-stoichiometric CeO2-x switching layer into TiO2-based devices can facilitate the enhancement of the endurance property for future nonvolatile memory applications.

Keywords: introducing thin; stoichiometric ceo2; non stoichiometric; layer; thin non; ceo2

Journal Title: Applied Physics Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.