LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Toward wafer-scale diamond nano- and quantum technologies

Photo from wikipedia

We investigate native nitrogen vacancy (NV) and silicon vacancy (SiV) color centers in a commercially available, heteroepitaxial, wafer-sized, mm thick, single-crystal diamond. We observe single, native NV centers with a… Click to show full abstract

We investigate native nitrogen vacancy (NV) and silicon vacancy (SiV) color centers in a commercially available, heteroepitaxial, wafer-sized, mm thick, single-crystal diamond. We observe single, native NV centers with a density of roughly 1 NV per μm3 and moderate coherence time (T2 = 5 μs) embedded in an ensemble of SiV centers. Using low temperature luminescence of SiV centers as a probe, we prove the high crystalline quality of the diamond especially close to the growth surface, consistent with a reduced dislocation density. Using ion implantation and plasma etching, we verify the possibility to fabricate nanostructures with shallow color centers rendering our material promising for fabrication of nanoscale sensing devices. As this diamond is available in wafer-sizes up to 100 mm, it offers the opportunity to up-scale diamond-based device fabrication.We investigate native nitrogen vacancy (NV) and silicon vacancy (SiV) color centers in a commercially available, heteroepitaxial, wafer-sized, mm thick, single-crystal diamond. We observe single, native NV centers with a density of roughly 1 NV per μm3 and moderate coherence time (T2 = 5 μs) embedded in an ensemble of SiV centers. Using low temperature luminescence of SiV centers as a probe, we prove the high crystalline quality of the diamond especially close to the growth surface, consistent with a reduced dislocation density. Using ion implantation and plasma etching, we verify the possibility to fabricate nanostructures with shallow color centers rendering our material promising for fabrication of nanoscale sensing devices. As this diamond is available in wafer-sizes up to 100 mm, it offers the opportunity to up-scale diamond-based device fabrication.

Keywords: scale diamond; vacancy; diamond; color centers; siv centers

Journal Title: APL Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.