LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Micro light plates for low-power photoactivated (gas) sensors

Photo from wikipedia

We report a miniaturized device integrating a photoactive material with a highly efficient Light Emitting Diode light source. This so-called micro light plate configuration allows for maximizing the irradiance impinging… Click to show full abstract

We report a miniaturized device integrating a photoactive material with a highly efficient Light Emitting Diode light source. This so-called micro light plate configuration allows for maximizing the irradiance impinging on the photoactive material, with a minimum power consumption, excellent uniformity, and accurate control of the illumination. We demonstrate these advantages with an example application: photoactivated gas sensors with a power consumption as low as 30 μW (this is 1000 times lower than the best figures reported to date). The letter also presents a quantitative model and a set of design rules to implement it in further integrated applications.We report a miniaturized device integrating a photoactive material with a highly efficient Light Emitting Diode light source. This so-called micro light plate configuration allows for maximizing the irradiance impinging on the photoactive material, with a minimum power consumption, excellent uniformity, and accurate control of the illumination. We demonstrate these advantages with an example application: photoactivated gas sensors with a power consumption as low as 30 μW (this is 1000 times lower than the best figures reported to date). The letter also presents a quantitative model and a set of design rules to implement it in further integrated applications.

Keywords: micro light; gas sensors; photoactivated gas; light; power

Journal Title: Applied Physics Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.