LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Steady-state and transient behavior in dynamic atomic force microscopy

Photo from wikipedia

We discuss the influence of external forces on the motion of the tip in dynamic atomic force microscopy (AFM). First, a compact solution for the steady-state problem is derived employing… Click to show full abstract

We discuss the influence of external forces on the motion of the tip in dynamic atomic force microscopy (AFM). First, a compact solution for the steady-state problem is derived employing a Fourier approach. Founding on this solution, we present an analytical framework to describe the transient behavior of the tip after perturbations of tip–sample forces and the excitation signal. The static and transient solutions are then combined to obtain the baseband response of the tip, i.e., the deflection signal demodulated with respect to the excitation. The baseband response generalizes the amplitude and phase response of the tip, and we use it to find explicit formulas describing the amplitude and phase modulation following the influence of external forces on the tip. Finally, we apply our results to obtain an accurate dynamic model of the amplitude controller and phase-locked loop driving the cantilever in a frequency modulated AFM setup. A special emphasis is put on discussing the tip response in environments of high damping, such as ambient or liquid.We discuss the influence of external forces on the motion of the tip in dynamic atomic force microscopy (AFM). First, a compact solution for the steady-state problem is derived employing a Fourier approach. Founding on this solution, we present an analytical framework to describe the transient behavior of the tip after perturbations of tip–sample forces and the excitation signal. The static and transient solutions are then combined to obtain the baseband response of the tip, i.e., the deflection signal demodulated with respect to the excitation. The baseband response generalizes the amplitude and phase response of the tip, and we use it to find explicit formulas describing the amplitude and phase modulation following the influence of external forces on the tip. Finally, we apply our results to obtain an accurate dynamic model of the amplitude controller and phase-locked loop driving the cantilever in a frequency modulated AFM setup. A special emphasis is put on discussing the tip response in environments ...

Keywords: response; microscopy; dynamic atomic; atomic force; transient; tip

Journal Title: Journal of Applied Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.