LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transition of predominant mechanism for the deviation of micro-gap dc gas breakdown character with electrode gap changing

Photo by einstein29 from unsplash

This paper explores the predominant mechanisms for the deviation of micro-gap dc gas breakdown and the transition between different mechanisms as the electrode separation d changing under a pin-to-plate electrode… Click to show full abstract

This paper explores the predominant mechanisms for the deviation of micro-gap dc gas breakdown and the transition between different mechanisms as the electrode separation d changing under a pin-to-plate electrode configuration using 2d3v particle-in-cell simulation with Monte Carlo collisions. The deviated breakdown characteristic curves as a function of d or gas pressure p are investigated and both present a plateau region. Through researching the position of discharge path, it is found that a self-modulation effect manages to maintain the breakdown voltage at the minimum value defined by Paschen’s curve in a certain d or p range and forms the plateau. The ranges of d and p for the plateau are also established. Theoretical calculation on the secondary electron emission coefficient induced by ion-enhanced field and determined by a surface roughness factor confirms that the ion-enhanced field emission effect affects the breakdown voltage significantly when d is below a critical value. The smaller the surface roughness factor is, the smaller the critical d will be. Under this effect, the breakdown voltage is decreased with d decreasing (also referred to as an increasing left branch with d increasing). Conclusively, the deviation characters of micro-gap gas breakdown are controlled by different mechanisms at different d ranges. The predominant mechanism for the deviation is the self-modulation effect, serving as the main reason for the plateau region, at moderate d of several micrometers and will transit to the ion-enhanced field emission effect, which is responsible for the increasing left branch at smaller d.This paper explores the predominant mechanisms for the deviation of micro-gap dc gas breakdown and the transition between different mechanisms as the electrode separation d changing under a pin-to-plate electrode configuration using 2d3v particle-in-cell simulation with Monte Carlo collisions. The deviated breakdown characteristic curves as a function of d or gas pressure p are investigated and both present a plateau region. Through researching the position of discharge path, it is found that a self-modulation effect manages to maintain the breakdown voltage at the minimum value defined by Paschen’s curve in a certain d or p range and forms the plateau. The ranges of d and p for the plateau are also established. Theoretical calculation on the secondary electron emission coefficient induced by ion-enhanced field and determined by a surface roughness factor confirms that the ion-enhanced field emission effect affects the breakdown voltage significantly when d is below a critical value. The smaller the surfa...

Keywords: deviation; gap; gas; gap gas; effect; micro gap

Journal Title: AIP Advances
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.