LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Split Archimedean spiral metasurface for controllable GHz asymmetric transmission

Photo by bogomi from unsplash

A chiral metasurface, which obtains chirality through a subwavelength artificial structure, is essential for realizing asymmetric transmission in the application of enantioselective sensing, spin-dependent light emission, and other polarization control… Click to show full abstract

A chiral metasurface, which obtains chirality through a subwavelength artificial structure, is essential for realizing asymmetric transmission in the application of enantioselective sensing, spin-dependent light emission, and other polarization control systems. Here, we studied a split Archimedean spiral metasurface, which can control the propagating wave from asymmetric transmission to symmetric transmission for linear polarized light. As a proof of concept, a dual-band asymmetric transmission is demonstrated in the GHz region using the coupling of the split spiral structures. The maximum asymmetric transmission parameter reaches 53%. By manipulating the height of the split spiral structures using microfluidic technology, a broadband asymmetric transmission is obtained with the bandwidth of 25.9%. Meanwhile, the asymmetric transmission can be controlled from 50% to 0%, enabling the propagation wave from asymmetric transmission to symmetric transmission. Furthermore, the asymmetric transmission is maintained when the metasurface is bent into different curvatures, promising high potential applications for optical isolation, one-way glass, and optical interconnects.A chiral metasurface, which obtains chirality through a subwavelength artificial structure, is essential for realizing asymmetric transmission in the application of enantioselective sensing, spin-dependent light emission, and other polarization control systems. Here, we studied a split Archimedean spiral metasurface, which can control the propagating wave from asymmetric transmission to symmetric transmission for linear polarized light. As a proof of concept, a dual-band asymmetric transmission is demonstrated in the GHz region using the coupling of the split spiral structures. The maximum asymmetric transmission parameter reaches 53%. By manipulating the height of the split spiral structures using microfluidic technology, a broadband asymmetric transmission is obtained with the bandwidth of 25.9%. Meanwhile, the asymmetric transmission can be controlled from 50% to 0%, enabling the propagation wave from asymmetric transmission to symmetric transmission. Furthermore, the asymmetric transmission is maintai...

Keywords: archimedean spiral; transmission; spiral metasurface; asymmetric transmission; split archimedean

Journal Title: Applied Physics Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.