LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface morphology and straight crack generation of ultrafast laser irradiated β-Ga2O3

Photo from wikipedia

Single crystal (010) β-Ga2O3 was irradiated by a Ti:sapphire ultrafast laser (150 fs pulse width) with varying fluences and a number of pulses in air ambient. Femtosecond laser-induced damage threshold of… Click to show full abstract

Single crystal (010) β-Ga2O3 was irradiated by a Ti:sapphire ultrafast laser (150 fs pulse width) with varying fluences and a number of pulses in air ambient. Femtosecond laser-induced damage threshold of β-Ga2O3 is reported. Single pulse exposure results in surface morphological changes above a threshold laser fluence of 1.11 J/cm2. Laser-induced straight cracks aligned to the [001] crystallographic direction are observed in the laser irradiated regions, which are believed to be caused by laser-induced thermal stress, due to the unique low thermal conductivity and anisotropy associated with β-Ga2O3. Multiple pulse irradiation below the single pulse damage threshold fluence exhibited the formation of high spatial frequency laser-induced periodic surface structures. Electron backscattering diffraction and Raman spectroscopy suggested that there was no apparent phase transition of the irradiated β-Ga2O3 material for either single pulse or multiple pulse irradiation. This work serves as a starting point to further understanding the material properties of β-Ga2O3 and to unlock the potential for ultrafast laser material processing of β-Ga2O3.Single crystal (010) β-Ga2O3 was irradiated by a Ti:sapphire ultrafast laser (150 fs pulse width) with varying fluences and a number of pulses in air ambient. Femtosecond laser-induced damage threshold of β-Ga2O3 is reported. Single pulse exposure results in surface morphological changes above a threshold laser fluence of 1.11 J/cm2. Laser-induced straight cracks aligned to the [001] crystallographic direction are observed in the laser irradiated regions, which are believed to be caused by laser-induced thermal stress, due to the unique low thermal conductivity and anisotropy associated with β-Ga2O3. Multiple pulse irradiation below the single pulse damage threshold fluence exhibited the formation of high spatial frequency laser-induced periodic surface structures. Electron backscattering diffraction and Raman spectroscopy suggested that there was no apparent phase transition of the irradiated β-Ga2O3 material for either single pulse or multiple pulse irradiation. This work serves as a starting point to f...

Keywords: laser; ga2o3; ultrafast laser; single pulse; spectroscopy; laser induced

Journal Title: Journal of Applied Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.