LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deformation and rupture of compound cells under shear: A discrete multiphysics study

Photo from wikipedia

This paper develops a three-dimensional numerical model for the simulation of cells in simple shear flow. The model is based on Discrete Multi-Physics (DMP), a meshless particle-based method that couples… Click to show full abstract

This paper develops a three-dimensional numerical model for the simulation of cells in simple shear flow. The model is based on Discrete Multi-Physics (DMP), a meshless particle-based method that couples the smoothed particle hydrodynamics and the mass-spring model. In this study, the effect of the nucleus in cells is investigated for a broad range of capillary numbers. It is shown that the nucleus size affects the deformation of the cell. Moreover, oscillations are observed in the tank-treading motion of the membrane when capillary number and nucleus size are both sufficiently large. Additionally, DMP shows that the cell and nuclei may experience rupture under extreme flow conditions.This paper develops a three-dimensional numerical model for the simulation of cells in simple shear flow. The model is based on Discrete Multi-Physics (DMP), a meshless particle-based method that couples the smoothed particle hydrodynamics and the mass-spring model. In this study, the effect of the nucleus in cells is investigated for a broad range of capillary numbers. It is shown that the nucleus size affects the deformation of the cell. Moreover, oscillations are observed in the tank-treading motion of the membrane when capillary number and nucleus size are both sufficiently large. Additionally, DMP shows that the cell and nuclei may experience rupture under extreme flow conditions.

Keywords: rupture; physics; deformation; model; particle; nucleus size

Journal Title: Physics of Fluids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.