LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Steady streaming viscometry of Newtonian liquids in microfluidic devices

Photo by mobx from unsplash

We report a novel technique capable of measuring the kinematic shear viscosity of Newtonian liquids with steady streaming flows in microfluidic devices. This probe-free microrheological method utilizes sub-kilohertz liquid oscillation… Click to show full abstract

We report a novel technique capable of measuring the kinematic shear viscosity of Newtonian liquids with steady streaming flows in microfluidic devices. This probe-free microrheological method utilizes sub-kilohertz liquid oscillation frequencies around a cylindrical obstacle, ensuring that the inner streaming layer is comparable in size to the cylinder radius. To calibrate the viscometer, the evolution of the inner streaming layer as a function of the oscillation frequency for a liquid of known viscosity is characterized using standard particle tracking techniques. Once calibrated, we show how the steady streaming viscometer can be used to measure low-viscosity liquids.We report a novel technique capable of measuring the kinematic shear viscosity of Newtonian liquids with steady streaming flows in microfluidic devices. This probe-free microrheological method utilizes sub-kilohertz liquid oscillation frequencies around a cylindrical obstacle, ensuring that the inner streaming layer is comparable in size to the cylinder radius. To calibrate the viscometer, the evolution of the inner streaming layer as a function of the oscillation frequency for a liquid of known viscosity is characterized using standard particle tracking techniques. Once calibrated, we show how the steady streaming viscometer can be used to measure low-viscosity liquids.

Keywords: viscosity; inner streaming; microfluidic devices; newtonian liquids; steady streaming; streaming layer

Journal Title: Physics of Fluids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.