LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogen concentration at a-Si:H/c-Si heterointerfaces—The impact of deposition temperature on passivation performance

Photo by jordanmcdonald from unsplash

We studied the effect of deposition temperature on the hydrogen distribution and the passivation performance of hydrogenated amorphous silicon (a-Si:H) coated crystalline silicon (c-Si) heterojunctions as a model of high… Click to show full abstract

We studied the effect of deposition temperature on the hydrogen distribution and the passivation performance of hydrogenated amorphous silicon (a-Si:H) coated crystalline silicon (c-Si) heterojunctions as a model of high efficiency solar cell structures. Nuclear reaction analysis (NRA) was employed to obtain hydrogen depth profiles of the heterojunctions prepared at temperatures from 80 to 180 °C. The implied open circuit voltage (i-VOC) and carrier lifetime monotonically increased with increasing deposition temperature in the as-deposited samples. NRA clarified that the hydrogen concentration (CH) at the a-Si:H/c-Si interface and in the a-Si:H layer decreased with deposition temperature. The hydrogen concentration around the interface was roughly 3 × 1021 cm-3 for the sample deposited at 180 °C. The NRA results are supplemented by optical constants obtained with spectroscopic ellipsometry (SE). At higher growth temperature, larger refractive indices and extinction coefficients were confirmed by SE analysis, suggesting that fewer hydrogen atoms are incorporated into the a-Si:H layers prepared at higher growth temperature. Furthermore, the passivation performance was enhanced by post deposition annealing (PDA) at 200 °C for 30 min. No significant change of the hydrogen distribution and optical constants was observed after PDA, suggesting that improved passivation is due to a local rearrangement of hydrogen at the molecular level that results in enhanced hydrogenation of dangling bonds.

Keywords: passivation performance; deposition temperature; temperature; hydrogen

Journal Title: AIP Advances
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.