LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Making inertial confinement fusion models more predictive

Photo from wikipedia

Computer models of inertial confinement fusion (ICF) implosions play an essential role in experimental design and interpretation as well as our understanding of fundamental physics under the most extreme conditions… Click to show full abstract

Computer models of inertial confinement fusion (ICF) implosions play an essential role in experimental design and interpretation as well as our understanding of fundamental physics under the most extreme conditions that can be reached in the laboratory. Building truly predictive models is a significant challenge, with the potential to greatly accelerate progress to high yield and ignition. One path to more predictive models is to use experimental data to update the underlying physics in a way that can be extrapolated to new experiments and regimes. We describe a statistical framework for the calibration of ICF simulations using data collected at the National Ignition Facility (NIF). We perform Bayesian inferences for a series of laser shots using an approach that is designed to respect the physics simulation as much as possible and then build a second model that links the individual-shot inferences together. We show that this approach is able to match multiple X-ray and neutron diagnostics for a whole series of NIF “BigFoot” shots. Within the context of 2D radiation hydrodynamic simulations, our inference strongly favors a significant reduction in fuel compression over other known degradation mechanisms (namely, hohlraum issues and engineering perturbations). This analysis is expanded using a multifidelity technique to pick fuel-ablator mix from several candidate causes of the degraded fuel compression (including X-ray preheat and shock timing errors). Finally, we use our globally calibrated model to investigate the extra laser drive energy that would be required to overcome the inferred fuel compression issues in NIF BigFoot implosions.Computer models of inertial confinement fusion (ICF) implosions play an essential role in experimental design and interpretation as well as our understanding of fundamental physics under the most extreme conditions that can be reached in the laboratory. Building truly predictive models is a significant challenge, with the potential to greatly accelerate progress to high yield and ignition. One path to more predictive models is to use experimental data to update the underlying physics in a way that can be extrapolated to new experiments and regimes. We describe a statistical framework for the calibration of ICF simulations using data collected at the National Ignition Facility (NIF). We perform Bayesian inferences for a series of laser shots using an approach that is designed to respect the physics simulation as much as possible and then build a second model that links the individual-shot inferences together. We show that this approach is able to match multiple X-ray and neutron diagnostics for a whole ser...

Keywords: confinement fusion; icf; physics; inertial confinement; predictive models

Journal Title: Physics of Plasmas
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.