LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A flexible single-electrode-based triboelectric nanogenerator based on double-sided nanostructures

Photo by joshuafernandez from unsplash

In this study, we report a flexible single-electrode-based triboelectric nanogenerator based on double-sided polymer surface nanostructures. The triboelectric nanogenerators have been applied to harvest all kinds of mechanical energy in… Click to show full abstract

In this study, we report a flexible single-electrode-based triboelectric nanogenerator based on double-sided polymer surface nanostructures. The triboelectric nanogenerators have been applied to harvest all kinds of mechanical energy in our daily life and convert them into electricity, and also used as a self-powered sensor system for touching pad and smart skin technologies. To enhance the performance of triboelectric nanogenerator, we fabricate a single-electrode-based triboelectric nanogenerator based on double-sided polydimethylsiloxane nanostructures and indium tin oxide electrode film using nanoimprint lithography. The nanostructures are nanopillar arrays with the diameter of about 200 nm to enhance the triboelectric effect. Open-circuit voltage and short-circuit current of the as-prepared samples are recorded using an oscilloscope with applying different external force at room temperature. The single-electrode-based triboelectric nanogenerator delivers an open-circuit voltage up to about 160 V, a short-circuit current of about 3 μA, and power density of 423.8 mW/m2, which provides an attractive solution to work as self-powered devices. This study greatly expands the applications of triboelectric nanogenerator as energy harvesting, environmental monitoring, and self-powered sensor systems.In this study, we report a flexible single-electrode-based triboelectric nanogenerator based on double-sided polymer surface nanostructures. The triboelectric nanogenerators have been applied to harvest all kinds of mechanical energy in our daily life and convert them into electricity, and also used as a self-powered sensor system for touching pad and smart skin technologies. To enhance the performance of triboelectric nanogenerator, we fabricate a single-electrode-based triboelectric nanogenerator based on double-sided polydimethylsiloxane nanostructures and indium tin oxide electrode film using nanoimprint lithography. The nanostructures are nanopillar arrays with the diameter of about 200 nm to enhance the triboelectric effect. Open-circuit voltage and short-circuit current of the as-prepared samples are recorded using an oscilloscope with applying different external force at room temperature. The single-electrode-based triboelectric nanogenerator delivers an open-circuit voltage up to about 160 V, a s...

Keywords: electrode based; nanogenerator; based triboelectric; single electrode; triboelectric nanogenerator

Journal Title: AIP Advances
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.