LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zermelo's problem: Optimal point-to-point navigation in 2D turbulent flows using Reinforcement Learning

Photo from wikipedia

To find the path that minimizes the time to navigate between two given points in a fluid flow is known as Zermelo's problem. Here, we investigate it by using a… Click to show full abstract

To find the path that minimizes the time to navigate between two given points in a fluid flow is known as Zermelo's problem. Here, we investigate it by using a Reinforcement Learning (RL) approach for the case of a vessel that has a slip velocity with fixed intensity, Vs, but variable direction and navigating in a 2D turbulent sea. We show that an Actor-Critic RL algorithm is able to find quasioptimal solutions for both time-independent and chaotically evolving flow configurations. For the frozen case, we also compared the results with strategies obtained analytically from continuous Optimal Navigation (ON) protocols. We show that for our application, ON solutions are unstable for the typical duration of the navigation process and are, therefore, not useful in practice. On the other hand, RL solutions are much more robust with respect to small changes in the initial conditions and to external noise, even when Vs is much smaller than the maximum flow velocity. Furthermore, we show how the RL approach is able to take advantage of the flow properties in order to reach the target, especially when the steering speed is small.

Keywords: reinforcement learning; navigation; point; zermelo problem; using reinforcement

Journal Title: Chaos
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.