We extend the scope of the dynamical theory of extreme values to include phenomena that do not happen instantaneously but evolve over a finite, albeit unknown at the onset, time… Click to show full abstract
We extend the scope of the dynamical theory of extreme values to include phenomena that do not happen instantaneously but evolve over a finite, albeit unknown at the onset, time interval. We consider complex dynamical systems composed of many individual subsystems linked by a network of interactions. As a specific example of the general theory, a model of a neural network, previously introduced by other authors to describe the electrical activity of the cerebral cortex, is analyzed in detail. On the basis of this analysis, we propose a novel definition of a neuronal cascade, a physiological phenomenon of primary importance. We derive extreme value laws for the statistics of these cascades, both from the point of view of exceedances (that satisfy critical scaling theory in a certain regime) and of block maxima.
               
Click one of the above tabs to view related content.