LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coulomb effects on thermally induced shuttling of spin-polarized electrons

Photo from wikipedia

A thermally driven single-electron transistor with magnetic leads and a movable central island (a quantum dot) subject to an external magnetic field is considered. The possibility of a mechanical instability… Click to show full abstract

A thermally driven single-electron transistor with magnetic leads and a movable central island (a quantum dot) subject to an external magnetic field is considered. The possibility of a mechanical instability caused by magnetic exchange interactions between spin-polarized electrons in this system was studied by the density matrix method. We proved analytically that for noninteracting electrons in the dot there is no such mechanical instability. However, for finite strengths of the Coulomb correlations in the dot we numerically found critical magnetic fields separating regimes of mechanical instability and electron shuttling on the one hand and damped mechanical oscillations on the other. It was shown that thermally induced magnetic shuttling of spin-polarized electrons is a threshold phenomenon, and the dependence of the threshold bias temperature on model parameters was calculated.A thermally driven single-electron transistor with magnetic leads and a movable central island (a quantum dot) subject to an external magnetic field is considered. The possibility of a mechanical instability caused by magnetic exchange interactions between spin-polarized electrons in this system was studied by the density matrix method. We proved analytically that for noninteracting electrons in the dot there is no such mechanical instability. However, for finite strengths of the Coulomb correlations in the dot we numerically found critical magnetic fields separating regimes of mechanical instability and electron shuttling on the one hand and damped mechanical oscillations on the other. It was shown that thermally induced magnetic shuttling of spin-polarized electrons is a threshold phenomenon, and the dependence of the threshold bias temperature on model parameters was calculated.

Keywords: shuttling spin; thermally induced; polarized electrons; spin polarized; mechanical instability

Journal Title: Low Temperature Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.