Determining the macroscopic mechanical properties of composites with complex microstructures is a key issue in many of their applications. In this Letter, a machine learning-based approach is proposed to predict… Click to show full abstract
Determining the macroscopic mechanical properties of composites with complex microstructures is a key issue in many of their applications. In this Letter, a machine learning-based approach is proposed to predict the effective elastic properties of composites with arbitrary shapes and distributions of inclusions. Using several data sets generated from the finite element method, a convolutional neural network method is developed to predict the effective Young's modulus and Poisson's ratio of composites directly from a window of their microstructural image. Through numerical experiments, we demonstrate that the trained network can efficiently provide an accurate mapping between the effective mechanical property and the microstructures of composites with complex structures. This study paves a way for characterizing heterogeneous materials in big data-driven material design.
               
Click one of the above tabs to view related content.