LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of dislocations on the thermal conductivity of gallium nitride studied by time-domain thermoreflectance

Photo by jontyson from unsplash

GaN thermal conductivity (κGaN) of hydride vapor phase epitaxy grown GaN (HVPE GaN), high nitride pressure grown GaN (HNP GaN), and metal-organic chemical vapor deposition grown GaN on sapphire (GaN/sapphire)… Click to show full abstract

GaN thermal conductivity (κGaN) of hydride vapor phase epitaxy grown GaN (HVPE GaN), high nitride pressure grown GaN (HNP GaN), and metal-organic chemical vapor deposition grown GaN on sapphire (GaN/sapphire) and on Si(111) (GaN/Si) are measured as 204.7 (±4.6), 206.6 (±6.8), 191.5 (±10.5), and 164.4 (±3.2) W/m K, respectively, using the time-domain thermoreflectance technique. Dislocation densities (σD) of HVPE GaN, HNP GaN, GaN/sapphire, and GaN/Si are measured as 4.80 (±0.42) × 105, 3.81 (±0.08) × 106, 2.43 (±0.20) × 108, and 1.10 (±0.10) × 109 cm−2, respectively, using cathodoluminescence and X-ray diffraction studies. Impurity concentrations of Si, H, C, and O are measured by secondary ion mass spectroscopy studies. The relationship between κGaN and σD is modeled through a new empirical model κGaN = 210 tanh0.12(1.5 × 108/σD). A modified Klemens's model, where dislocation induced scattering strength is increased, is proposed to explain the experimental rate of decrease in κGaN with increasing σD. Overall, this work reports how κGaN of heteroepitaxially-grown GaN can be estimated based on σD, providing key design guidelines for thermal management in GaN semiconductor devices.GaN thermal conductivity (κGaN) of hydride vapor phase epitaxy grown GaN (HVPE GaN), high nitride pressure grown GaN (HNP GaN), and metal-organic chemical vapor deposition grown GaN on sapphire (GaN/sapphire) and on Si(111) (GaN/Si) are measured as 204.7 (±4.6), 206.6 (±6.8), 191.5 (±10.5), and 164.4 (±3.2) W/m K, respectively, using the time-domain thermoreflectance technique. Dislocation densities (σD) of HVPE GaN, HNP GaN, GaN/sapphire, and GaN/Si are measured as 4.80 (±0.42) × 105, 3.81 (±0.08) × 106, 2.43 (±0.20) × 108, and 1.10 (±0.10) × 109 cm−2, respectively, using cathodoluminescence and X-ray diffraction studies. Impurity concentrations of Si, H, C, and O are measured by secondary ion mass spectroscopy studies. The relationship between κGaN and σD is modeled through a new empirical model κGaN = 210 tanh0.12(1.5 × 108/σD). A modified Klemens's model, where dislocation induced scattering strength is increased, is proposed to explain the experimental rate of decrease in κGaN with increasing σD. Ove...

Keywords: gan sapphire; time domain; thermal conductivity; gan; spectroscopy; grown gan

Journal Title: Journal of Applied Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.