LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Scales of turbulence in open-channel flows with low relative submergence

Photo by hannahrdg from unsplash

The present work aims at studying the turbulence structure developed over a highly rough bed in open-channel flows (OCFs) by varying the relative submergence through the use of three sediment… Click to show full abstract

The present work aims at studying the turbulence structure developed over a highly rough bed in open-channel flows (OCFs) by varying the relative submergence through the use of three sediment sizes ranging from gravels to pebbles. The second-order moments were analyzed and compared with those already observed for canonical turbulent OCFs having similar values of relative submergence. Particular attention was paid to the turbulent Reynolds stresses, and the viscous and the form-induced shear stresses in the near bed region. The violation of the Taylor hypothesis was verified through an alternative method, by comparing two time scales, namely, the large scale advection time and the eddy characteristic nonlinear time. Moreover, an analysis of the large eddies was performed with the spectral analysis. The premultiplied spectra provide a way to quantify the contribution of different eddy scales (peaks in the premultiplied spectra) and indicate wavelengths in which a significant amount of energy resides. In order to locate the normalized wavelengths associated with the peaks in the premultiplied spectra, a systematic procedure is presented.The present work aims at studying the turbulence structure developed over a highly rough bed in open-channel flows (OCFs) by varying the relative submergence through the use of three sediment sizes ranging from gravels to pebbles. The second-order moments were analyzed and compared with those already observed for canonical turbulent OCFs having similar values of relative submergence. Particular attention was paid to the turbulent Reynolds stresses, and the viscous and the form-induced shear stresses in the near bed region. The violation of the Taylor hypothesis was verified through an alternative method, by comparing two time scales, namely, the large scale advection time and the eddy characteristic nonlinear time. Moreover, an analysis of the large eddies was performed with the spectral analysis. The premultiplied spectra provide a way to quantify the contribution of different eddy scales (peaks in the premultiplied spectra) and indicate wavelengths in which a significant amount of energy resides. In ord...

Keywords: channel flows; submergence; premultiplied spectra; time; open channel; relative submergence

Journal Title: Physics of Fluids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.