In this paper, the effects of asymmetry in an electrical synaptic connection between two neuronal oscillators with a small discrepancy are studied in a 2D Hindmarsh-Rose model. We have found… Click to show full abstract
In this paper, the effects of asymmetry in an electrical synaptic connection between two neuronal oscillators with a small discrepancy are studied in a 2D Hindmarsh-Rose model. We have found that the introduced model possesses a unique unstable equilibrium point. We equally demonstrate that the asymmetric electrical couplings as well as external stimulus induce the coexistence of bifurcations and multiple firing patterns in the coupled neural oscillators. The coexistence of at least two firing patterns including chaotic and periodic ones for some discrete values of coupling strengths and external stimulus is demonstrated using time series, phase portraits, bifurcation diagrams, maximum Lyapunov exponent graphs, and basins of attraction. The PSpice results with an analog electronic circuit are in good agreement with the results of theoretical analyses. Of most/particular interest, multistability observed in the coupled neuronal model is further controlled based on the linear augmentation scheme. Numerical results show the effectiveness of the control strategy through annihilation of the periodic coexisting firing pattern. For higher values of the coupling strength, only a chaotic firing pattern survives. To the best of the authors' knowledge, the results of this work represent the first report on the phenomenon of coexistence of multiple firing patterns and its control ever present in a 2D Hindmarsh-Rose model connected to another one through an asymmetric electrical coupling and, thus, deserves dissemination.
               
Click one of the above tabs to view related content.