LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of electrospun nanofibrous structures with controlled optical and electrical properties

Photo by younis67 from unsplash

In this study, the optical and electrical influences of 2D graphene flakes in electrospun polycaprolactone (PCL) fibers were observed. Graphene nanoplatelets were added in different concentrations into the PCL solution,… Click to show full abstract

In this study, the optical and electrical influences of 2D graphene flakes in electrospun polycaprolactone (PCL) fibers were observed. Graphene nanoplatelets were added in different concentrations into the PCL solution, and then, using the electrospinning technique, fibers were built from that solution. Three samples were prepared with different graphene concentrations of 0% w/w, 0.5% w/w, and 2.0% w/w. From all three samples, fibers were prepared and tests were conducted for the identification of the properties of fibers. An optical spectroscopy test was performed to identify the optical behavior of the fibers. Scanning electron microscopy tests were conducted for the morphological characterization of the fibers. For the comparison of the electrical conductivity of the three samples, electrical tests were also conducted. In addition, Raman spectroscopy was conducted to characterize the graphene and PCL. This study shows that using graphene can change the properties of fibers, for example, as the graphene content increases, the fiber diameter also increases. Also, by varying the 2D graphene concentration, both electrical and optical properties can be tuned; this can be utilized in the synthesis of nanosensing surfaces and structures.

Keywords: nanofibrous structures; electrospun nanofibrous; optical electrical; synthesis electrospun; spectroscopy; three samples

Journal Title: AIP Advances
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.