LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-powered flexible and transparent smart patch for temperature sensing

Photo from wikipedia

Wearable electronics that can deform with human skin and monitor physical information are promising next-generation electronics. Here, we demonstrate a self-powered smart patch for temperature sensing by integrating a triboelectric… Click to show full abstract

Wearable electronics that can deform with human skin and monitor physical information are promising next-generation electronics. Here, we demonstrate a self-powered smart patch for temperature sensing by integrating a triboelectric nanogenerator, power management circuit and temperature sensor together. Benefitting from the functional nanomaterial and fabrication process of spray coating, the main part of the device shows extraordinary mechanical flexibility and visible transparency. The temperature sensor presents a high sensitivity of 0.54% per Kelvin scaled by relative resistance change. Owing to the high efficiency of the implemented power management circuit, a capacitor of 100 μF can be easily charged to 1 V within 105 s through the triboelectric nanogenerator contacting with cotton, which can drive the sensor continuously to work for more than 100 s. The large-scalable fabrication process and integration design give this smart patch potential applications in human-machine interfaces and soft electronic skins.Wearable electronics that can deform with human skin and monitor physical information are promising next-generation electronics. Here, we demonstrate a self-powered smart patch for temperature sensing by integrating a triboelectric nanogenerator, power management circuit and temperature sensor together. Benefitting from the functional nanomaterial and fabrication process of spray coating, the main part of the device shows extraordinary mechanical flexibility and visible transparency. The temperature sensor presents a high sensitivity of 0.54% per Kelvin scaled by relative resistance change. Owing to the high efficiency of the implemented power management circuit, a capacitor of 100 μF can be easily charged to 1 V within 105 s through the triboelectric nanogenerator contacting with cotton, which can drive the sensor continuously to work for more than 100 s. The large-scalable fabrication process and integration design give this smart patch potential applications in human-machine interfaces and soft electro...

Keywords: temperature; patch temperature; smart patch; sensor; self powered

Journal Title: Applied Physics Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.