LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High power edge-cum-surface emitting terahertz laser arrays phased locked by vacuum guided plasmon waves

Photo from wikipedia

Terahertz semiconductor quantum-cascade lasers (QCLs) are widely implemented with metallic cavities that support low-loss plasmonic optical modes at long wavelengths. However, resonant optical modes in such cavities suffer from poor… Click to show full abstract

Terahertz semiconductor quantum-cascade lasers (QCLs) are widely implemented with metallic cavities that support low-loss plasmonic optical modes at long wavelengths. However, resonant optical modes in such cavities suffer from poor radiative characteristics due to their subwavelength transverse dimensions. Consequently, single-mode terahertz QCLs with metallic cavities and large ( > 100 mW) output power have only been realized in the surface-emitting configuration that affords a large radiating surface. Here, we demonstrate a method to enhance radiative outcoupling from such plasmonic lasers for high-power emission in the edge-emitting (end-fire or longitudinal) direction. Single-sided plasmon waves propagating in vacuum are resonantly excited in surrounding medium of metallic cavities with the QCL semiconductor medium. The vacuum guided plasmon waves with a large wavefront phase-lock multiple metallic cavities longitudinally, which leads to intense radiation in multiple directions, including that in the longitudinal direction in a narrow single-lobed beam. The multicavity array radiates predominantly in a single spectral mode. A peak-power output of 260 mW and a slope efficiency of 303 mW/A are measured for the end-fire beam from a 3.3 THz QCL operating at 54 K in a Stirling cooler. Single-mode operation and lithographic tuning across a bandwidth of ∼ 150 GHz are demonstrated.Terahertz semiconductor quantum-cascade lasers (QCLs) are widely implemented with metallic cavities that support low-loss plasmonic optical modes at long wavelengths. However, resonant optical modes in such cavities suffer from poor radiative characteristics due to their subwavelength transverse dimensions. Consequently, single-mode terahertz QCLs with metallic cavities and large ( > 100 mW) output power have only been realized in the surface-emitting configuration that affords a large radiating surface. Here, we demonstrate a method to enhance radiative outcoupling from such plasmonic lasers for high-power emission in the edge-emitting (end-fire or longitudinal) direction. Single-sided plasmon waves propagating in vacuum are resonantly excited in surrounding medium of metallic cavities with the QCL semiconductor medium. The vacuum guided plasmon waves with a large wavefront phase-lock multiple metallic cavities longitudinally, which leads to intense radiation in multiple directions, including that ...

Keywords: surface emitting; metallic cavities; power; vacuum; plasmon waves

Journal Title: Applied Physics Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.