LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of hydrogen migrations in carbonyl peroxy radicals in the atmosphere

Photo from wikipedia

Carbonyl peroxy radicals (RC(O)O2) are the ubiquitous radical intermediates in the atmospheric oxidation of volatile organic compounds. In this work, theoretical studies are carried out to explore the role of… Click to show full abstract

Carbonyl peroxy radicals (RC(O)O2) are the ubiquitous radical intermediates in the atmospheric oxidation of volatile organic compounds. In this work, theoretical studies are carried out to explore the role of the unimolecular H-migration in the carbonyl peroxy radicals by using quantum chemistry and kinetics calculations. The results showed that H-migration could be significant in the atmosphere at least in CH3CH2CH2C(O)O2 and (CH3)2CHCH2C(O)O2 with rates of ~0.012 and ~0.58 s−1 at 298 K. Subsequent reactions of CH3CHCH2C(O)OOH would lead to the products with multi-functional groups, which might affect the aerosol formation process; while (CH3)2CCH2C(O)OOH would transform to formaldehyde and acetone in a few steps. These processes would be important for the atmospheric modelling of volatile organic compounds under low-NOx conditions.Carbonyl peroxy radicals (RC(O)O2) are the ubiquitous radical intermediates in the atmospheric oxidation of volatile organic compounds. In this work, theoretical studies are carried out to explore the role of the unimolecular H-migration in the carbonyl peroxy radicals by using quantum chemistry and kinetics calculations. The results showed that H-migration could be significant in the atmosphere at least in CH3CH2CH2C(O)O2 and (CH3)2CHCH2C(O)O2 with rates of ~0.012 and ~0.58 s−1 at 298 K. Subsequent reactions of CH3CHCH2C(O)OOH would lead to the products with multi-functional groups, which might affect the aerosol formation process; while (CH3)2CCH2C(O)OOH would transform to formaldehyde and acetone in a few steps. These processes would be important for the atmospheric modelling of volatile organic compounds under low-NOx conditions.

Keywords: organic compounds; volatile organic; chemistry; peroxy radicals; role; carbonyl peroxy

Journal Title: Chinese Journal of Chemical Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.