LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Imaging the dissociation dynamics of Si2+ via two-photon excitation at 193 nm

Photo by kattrinnaaaaa from unsplash

In the one-color experiment at 193 nm, we studied the photodissociation of Si2+ ions prepared by two-photon ionization using the time-sliced ion velocity map imaging method. The Si+ imaging study shows… Click to show full abstract

In the one-color experiment at 193 nm, we studied the photodissociation of Si2+ ions prepared by two-photon ionization using the time-sliced ion velocity map imaging method. The Si+ imaging study shows that Si2+ dissociation results in two distinct channels: Si(3Pg)+Si+(2Pu) and Si(1D2)+Si+(2Pu). The main channel Si(3Pg)+Si+(2Pu) is produced by the dissociation of the Si2+ ions in more than one energetically available excited electronic state, which are from the ionization of Si2(v=0−5). Particularly, the dissociation from the vibrationally excited Si2(v=1) shows the strongest signal. In contrast, the minor Si(1D2)+Si+(2Pu) channel is due to an avoided crossing between the two 2Πg states in the same symmetry. It has also been observed the one-photon dissociation of Si2+(X4Σg−) into Si(1D2)+Si+(2Pu) products with a large kinetic energy release.

Keywords: 1d2 2pu; two photon; dissociation; photon; imaging dissociation; dissociation dynamics

Journal Title: Chinese Journal of Chemical Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.