LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational study on interactions between CO2 and (TiO2)n clusters at specific sites

Photo by aaronburden from unsplash

The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional theory (DFT). Our… Click to show full abstract

The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional theory (DFT). Our calculated results show that CO2 is adsorbed preferably on the bridge O atom of the clusters, forming a 'chemisorption' carbonate complex, while the CO is adsorbed preferably to the Ti atom of terminal Ti-O. The computed carbonate vibrational frequency values are in good agreement with the results obtained experimentally, which suggests that CO2 in the complex is distorted slightly from its undeviating linear configuration. In addition, the analyses of electronic parameters, electronic density, ionization potential, HOMO-LUMO gap, and density of states (DOS) confirm the charge transfer and interaction between CO2 and the cluster. From the predicted energy profiles, CO2 can be easily adsorbed and activated, while the activation of CO2 on (TiO2)n clusters are structure-dependent and energetically more favorable than that on the bulk TiO2. Overall, this study critically highlights how the small (TiO2)n clusters can influence the CO2 adsorption and activation which are the critical steps for CO2 reduction the surface of a catalyst and subsequent conversion into industrially relevant chemicals and fuels.

Keywords: study interactions; computational study; co2 tio2; tio2 clusters

Journal Title: Chinese Journal of Chemical Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.