The recently constructed cryogenic cylindrical ion trap velocity map imaging spectrometer (CIT-VMI) has been upgraded for coincidence imaging of both ionic and neutral photofragments from photodissociation of ionic species. The… Click to show full abstract
The recently constructed cryogenic cylindrical ion trap velocity map imaging spectrometer (CIT-VMI) has been upgraded for coincidence imaging of both ionic and neutral photofragments from photodissociation of ionic species. The prepared ions are cooled down in a home-made cryogenic cylindrical ion trap and then extracted for photodissociation experiments. With the newly designed electric fields for extraction and acceleration, the ion beam can be accelerated to more than 4500 eV, which is necessary for velocity imaging of the neutral photofragments by using the position-sensitive imaging detector. The setup has been tested by the 355 nm photodissociation dynamics of the argon dimer cation (Ar2+). From the recorded experimental images of both neutral Ar and ionic Ar+ fragments, we interpret velocity resolutions of Δv/v ~ 4.6% for neutral fragments, and Δv/v ~ 1.5% for ionic fragments, respectively.
               
Click one of the above tabs to view related content.