LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Log-convex set of Lindblad semigroups acting on N-level system

Photo by onelast from unsplash

We analyze the set ${\cal A}_N^Q$ of mixed unitary channels represented in the Weyl basis and accessible by a Lindblad semigroup acting on an $N$-level quantum system. General necessary and… Click to show full abstract

We analyze the set ${\cal A}_N^Q$ of mixed unitary channels represented in the Weyl basis and accessible by a Lindblad semigroup acting on an $N$-level quantum system. General necessary and sufficient conditions for a mixed Weyl quantum channel of an arbitrary dimension to be accessible by a semigroup are established. The set ${\cal A}_N^Q$ is shown to be log--convex and star-shaped with respect to the completely depolarizing channel. A decoherence supermap acting in the space of Lindblad operators transforms them into the space of Kolmogorov generators of classical semigroups. We show that for mixed Weyl channels the hyper-decoherence commutes with the dynamics, so that decohering a quantum accessible channel we obtain a bistochastic matrix form the set ${\cal A}_N^C$ of classical maps accessible by a semigroup. Focusing on $3$-level systems we investigate the geometry of the sets of quantum accessible maps, its classical counterpart and the support of their spectra. We demonstrate that the set ${\cal A}_3^Q$ is not included in the set ${\cal U}^Q_3$ of quantum unistochastic channels, although an analogous relation holds for $N=2$. The set of transition matrices obtained by hyper-decoherence of unistochastic channels of order $N\ge 3$ is shown to be larger than the set of unistochastic matrices of this order, and yields a motivation to introduce the larger sets of $k$-unistochastic matrices.

Keywords: system; level; set cal; acting level; log convex

Journal Title: Journal of Mathematical Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.