LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stability of a non-Newtonian falling film due to three-dimensional disturbances

Photo from academic.microsoft.com

In this paper, we apply the normal modes method to study the linear stability of a liquid film flowing down an inclined plane, taking into account the complex rheology of… Click to show full abstract

In this paper, we apply the normal modes method to study the linear stability of a liquid film flowing down an inclined plane, taking into account the complex rheology of the media. We consider generalized Newtonian liquids; the conditions of the Squire theorem do not hold for this case. We check if the flow is unstable due to three-dimensional (3D) disturbances that propagate at a certain angle to the flow direction but stable for the two-dimensional (2D) ones. We derived the generalized Orr–Sommerfeld equation, considered a long-wave approximation, and proved that 3D long-wave disturbances are less growing than the 2D ones for any rheological law. We solved the problem for finite wavenumbers numerically and found that for low inclination angles of the plane, instability due to 3D disturbances prevails. In this case, the shear mode of instability dominates, and the surface tension destabilizes the flow. For shear-thickening liquids, the critical Reynolds number decreases down to zero.

Keywords: three dimensional; dimensional disturbances; stability non; film; due three

Journal Title: Physics of Fluids
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.