LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Observation of plateau-like magnetoresistance in twisted Fe3GeTe2/Fe3GeTe2 junction

Controlling the stacking of van der Waals (vdW) materials is found to produce exciting new findings, since hetero- or homo-structures have added the diverse possibility of assembly and manipulated functionalities.… Click to show full abstract

Controlling the stacking of van der Waals (vdW) materials is found to produce exciting new findings, since hetero- or homo-structures have added the diverse possibility of assembly and manipulated functionalities. However, so far, the homostructure with a twisted angle based on the magnetic vdW materials remains unexplored. Here, we achieved a twisted magnetic vdW Fe3GeTe2 (FGT)/Fe3GeTe2 junction with broken crystalline symmetry. A clean and metallic vdW junction is evidenced by the temperature-dependent resistance and the linear I–V curve. Unlike the pristine FGT, a plateau-like magnetoresistance (PMR) is observed in the magnetotransport of our homojunction due to the antiparallel magnetic configurations of the two FGT layers. The PMR ratio is found to be ∼0.05% and gets monotonically enhanced as temperature decreases like a metallic giant magnetoresistance. Such a tiny PMR ratio is at least three orders of magnitude smaller than the tunneling magnetoresistance ratio, justifying our clean metallic junction without a spacer. Our findings demonstrate the feasibility of the controllable homostructure and shed light on future spintronics using magnetic vdW materials.

Keywords: vdw; magnetoresistance; plateau like; fe3gete2 junction; junction; like magnetoresistance

Journal Title: Journal of Applied Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.