LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A microfluidic flow analyzer with integrated lensed optical fibers.

Photo from wikipedia

Rapid optical interrogation of flowing cells or particles is a powerful tool in the field of biomedical diagnostics. Determination of size and composition of fast-flowing cells, with diameters in the… Click to show full abstract

Rapid optical interrogation of flowing cells or particles is a powerful tool in the field of biomedical diagnostics. Determination of size and composition of fast-flowing cells, with diameters in the range of 2- 15 μ m , often require complex open-space optics and expensive high-speed cameras. In this work, a method to overcome these challenges by using a hydrodynamic flow-based microfluidic platform coupled with on-chip integrated fiber optics is reported. The lab-scale portable device developed uses a combination of on-chip lensed and non-lensed optical fibers for precision illumination. The narrow light beam produced by the lensed fiber ( f = 150 μ m ) enables precise optical analysis with high sensitivity. A planar arrangement of optical fibers at various angles facilitates multi-parametric analysis from a single point of interrogation. As proof of concept, the laboratory-scale portable bench-top prototype is used to measure fluorescence signals from CD4 immunostained cells and human blood samples. The performance of microfluidic flow analyzer is also compared to the conventional Guava® easyCyte 8HT flow cytometer.

Keywords: lensed optical; optics; flow analyzer; optical fibers; microfluidic flow

Journal Title: Biomicrofluidics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.